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ABSTRACT: A numerical study is performed to investigate the influence of a joint constitutive model on the
stress-strain behaviour of a rock mass. Distinct element simulations are carried out on 3 different block size
models of a rock mass using the Barton-Bandis (BB) and the Mohr-Coulomb (MC) joint constitutive models.
The results show that the peak shear strength of a rock mass depends on the constitutive law used. The BB
model, which allows the modelling of the dilation accompanying shear, predicts results similar to those from
reported physical model tests on jointed slabs of a rock model material. A closely jointed rock mass in which
block rotations occur exhibits a lower stiffness but a higher strength than a rock mass with widely spaced
joints. The MC model, in which the dilation angle is constant, is relatively insensitive to the effects of

different block sizes on the stress-strain behaviour of a rock mass.

INTRODUCTION

Numerical models serve as useful tools in simulating
the response of discontinuous media subjected to
loading. The Discrete Element Method, UDEC
[Universal Distinct Element Code, (Cundall (1980),
Cundall and Hart (1993)] is a powerful discontinu-
um modelling approach for simulating the behaviour
of jointed rock masses subjected to quasi-static or
dynamic loading conditions. In this method, the
deformations and volumetric changes of the intact
rock material (blocks) as well as the shear and
normal displacements along the joints are included.

Due to the high degree of non-linearity of the sys-
tems being modelled, explicit (as opposed to impli-
cit) numerical solution techniques are favoured for
codes like UDEC (Universal Distinct Element
Code). In this technique no matrices are formed as
the procedure marches forward in small steps en-
suring final equilibrium at each material integration
point in the model.

The mechanical behaviour of a jointed rock mass is
strongly affected by the behaviour of discontinuities.
Therefore, an inevitable component of many numeri-
cal techniques is the constitutive model of disconti-
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nuities. During the excavation of an underground

opening, the jointed rock may slip or separate along
the discontinuities and the movement of the rock
blocks may occur through translational or rotational
shear. A clear understanding of the mechanical
behaviour of rock joints is important for analysing
and predicting underground structures in jointed
rock masses. Several joint constitutive models have
been developed in the past two decades for provi-
ding a realistic simulation of the mechanical beha-
viour of rock discontinuities. (e.g., Barton (1982)
and Barton and Bandis (1990), Cundall and Hart
(1984), Saeb and Amadei (1992), and Souley and
Homand (1995). However, it is still customary
among many numerical modellers to use the non-
realistic linear-elastic Mohr-Coulomb joint constitu-
tive model. This may be attributed to its computa-
tional efficiency in numerical codes and the assumed
availability of the Mohr-Coulomb parameters for the
cohesion intercept and friction angle in the literature.

This paper compares the results from numerical
modelling of the stress-strain behaviour of a rock
mass using the non-linear Barton-Bandis (BB) joint
constitutive model with those from the Mohr-
Coulomb (MC) model. The numerical modelling of
block size effects and the influence of joint



properties in multiply jointed rock using UDEC-BB
has been investigated by Bhasin and Hgeg (1997). A
brief description of the BB model and some UDEC-
BB results are given below:

A BRIEF DESCRIPTION OF THE BB MODEL

The BB non-linear rock joint model describes the
shear strength of a joint using the following equation
of Barton and Choubey (1977):

T =, tan{JRC log(l;—:ﬁ] + CD,} @)

n

where

o,=  effective normal stress across the
joint

JRC = joint roughness coefficient (0-20)
(In Equation 1 the dimension of JRC
is in degrees)

JCS = joint wall compressive strength

O = residual friction angle

The normal stress (G,) versus closure (V) relation of
a joint in terms of initial normal stiffness Ky, and
maximum closure (V,n) is described by Bandis et al.
(1981). Their relation for normal stiffness, K, is as

follows:
K
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In the BB model, the secant shear stiffness up to
peak (usually called peak shear stiffness) is
calculated using the following relationship:

K== 3)

where the peak shear displacement J;, is given by the
following empirical relationship Barton (1990):
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where L, = length of joint in meters and JRC is a
coefficient between 0-20 depending on the joint
roughness.

The size dependent joint roughness and strength are
derived using the following equations proposed by
Barton and Bandis (1982):

L -0.02JRC,
JRC, = JRC, L—} (5)

0
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-0.03JRC,
JCS, = JCSO[ "] ©6)
L,
where the subscripts (0) and (n) refer to the reference
joint test length (100 mm) and in sifu joint length

(Ln), respectively.

An appealing feature of the BB-model is that the
basic input parameters for rock discontinuities JRC,
JCS and ¢, are easily measurable in the field or can
be obtained through index testing in the laboratory.

NUMERICAL EXPERIMENTS USING
UDEC-BB

Table 1 shows the mechanical properties of the
intact rock and the BB joint shear strength para-
meters (JRC, JCS and ¢;) adopted for the UDEC-BB
modelling studies. The intact rock consists of fully
deformable blocks subdivided into finite difference
zones to calculate internal stress and strain. These
blocks were modelled as linear-elastic and isotropic
materials.

Table 1. BB joint parameters and intact rock
parameters assumed for the UDEC simulations.

Parameters Values
Joint roughness coefficient JRC, 10
Joint compressive strength JCS, (MPa) 35
Laboratory scale length L, (m) 0.1
Residual friction angle ¢.(°) 25

Uniaxial compression strength 6. (MPa) 50

Density (p) kN/m® 27.5
Poisson’s ratio (V) 0.25
Deformation modulus E4 (GPa) 20

Distinct element simulations were performed on
models of a rock mass of given dimensions but with
three different block sizes. The three 1mx1m rock
mass models (vertical slabs assumed), shown in Fig.
1, contain two sets of equally spaced persistent joints
dipping at an angle of 45° from the horizontal. Joint
spacing ranges from 0.3m in model 1 to 0.1m in
model 3. For investigating the influence of joint
spacing on the stress-strain behaviour of a rock
mass, stress boundaries (6y=0,, 64=03) are applied
as shown in Fig. 2. As a first step the models were
consolidated under the stress ¢; = 63 = 2.5 MPa and
from then on 6, was increased keeping o3 constant.



The strains caused by the deviatoric stresses for the
three rock mass models using the BB input data are
shown in Fig. 3. For this comparison, the three
models had identical input parameters except for the
joint spacing. No scaling of the properties was
introduced as would be usual in view of the
different joint lengths in the three models.

Figure 1. Three discretised assemblies of blocks
used for the numerical experiments

Oy
JY Y VY VOV Y OV,
> Oh
. p- < S T o

Figure 2. Stress boundary conditions.

The large lateral expansion (mass "Poisson’s ratio")
is apparent in all the three cases. As block size was
reduced, the secant modulus up to a deviatoric stress
of 10 MPa reduced from 1.2 to 0.7 GPa (see Fig. 4).
At the same level of G| - 03, the axial strain in model
1 was smaller than in models 2 and 3. However, a
higher deviatoric stress is required to fail model 3
than the two others. The results indicate that the
shear strength of a closely jointed rock mass is
significantly higher than for a rock mass with wider
spacing.

Models 1 and 2 failed as shown in Fig. 5, which
presents a displacement vector plot visualising the
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shear failure for model 1. The contrasting stress-
strain behaviour exhibited by the three different
models indicates some block size effects on the mass
"Poisson’s ratio". The ratio of lateral strain/axial
strain increases to well beyond = 0.5 as shear
strength is increasingly mobilised (see Fig. 3). The
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Figure 3. Deformation behaviour exhibited by the
three models of different sized blocks.

larger size block assemblies (models 1 and 2) de-
form mainly through translational shear resulting in
a rapid increase in mass "Poisson’s ratio" to about
0.92 before the onset of shear failure. At a deviatoric
stress of about 8 MPa the mass "Poisson’s ratio" in
model 3 falls below that of models 1 and 2. At a



deviatoric stress of about 14 MPa the mass
Poisson’s ratio for model 3 is 0.92. Note that at this
stress level models 1 and 2 would probably have had
a mass "Poisson’s ratio" beyond 1.0, but they failed
before that level was reached.
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Figure 4 Equivalent secant modulus upto 10 MPa
for the three different block size models
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Figure 5. Displacement vector plot showing the
shear failure for model 1.

These numerical results are very similar to the
physical model tests reported by Barton and Bandis,
1982 (see Fig. 6). In these physical model tests,
jointed slabs simulating different cross joint spacing
were stressed to failure in a biaxial frame. A double
bladed "guillotine" was used for generating model
tension fractures (joint sets) through slabs of the
weak brittle material, which was formed from an
oven-cured combination of red lead-sand-ballotini-
plaster-water. The peak strength (t) of the joints
were described closely by Equation (1). The large
increase in mass "Poisson’s ratio" due to joint shear
in the numerical experiments (see Fig. 3) have also
been observed in the physical model studies reported
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by Barton and Hansteen (1979) and Barton and
Bandis (1982), and will depend on the orientation of
the joints.

The distinctly convex load-deformation behaviour
shown by models 1 and 2 in Fig. 4 are typical of a
rock mass with diagonal joints. As illustrated sche-
matically in Fig. 7, the shear components are largely
responsible for the deformation of a rock mass with
diagonal joints. Horizontal joints such as those
parallel to the bedding are mainly subjected to
normal closure and show a concave load-deforma-
tion behaviour. In this case the lateral expansion is
limited, and the shear components are largely absent.
It is interesting to note that model 3 shows a linear
type of load-deformation behaviour due to the
combined effect of shearing and closure on an
increased number of joints (see Fig. 3). This
resembles the axial strain results from the physical
model test on 4000 blocks (see Fig. 6).

The present numerical simulations are clearly illus-
trative of the block size effects on the deformation
behaviour of jointed rock masses. Small block sizes
which allow rotation to occur, exhibited a higher
strength than the larger blocks which failed by trans-
lational shear along a number of continuous joints.

Tunnels in jointed rock masses are likely to fail by
translational shear if block sizes are large compared
to the tunnel dimensions. Block rotations occur only
when partial failure through translational shear has
occurred creating the space for rotations. Figure 8
shows a special case of failure for model 3 in which
a tunnel was excavated at a deviatoric stress of 14
MPa. The increased degree of freedom of the
individual joint blocks is apparent from this figure.
However kink band development as observed in a
4000 block model [see Fig. 6 and Barton and Bandis
(1982)] did not develop in the present 144 block
numerical model.

ESTIMATION OF EQUIVALENT ¢ AND ¢
VALUES FROM THE BB JOINT PARAMETERS

In the following, the Mohr-Coulomb parameters ¢
and ¢ are derived from the BB parameters to have
consistent comparison. These are then introduced in
the 3 models so that the effect of linear joint pro-
perties on the predicted behaviour of the rock mass
can be investigated. In the BB-model the dilation
along the joint develops gradually with shear
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Figure 7 Contrasting load-deformation behaviour for rock masses with different magnitudes of
joint shear (S) and normal deformation (N) components, Barton, 1990.

displacement (using the JRC mobilised concept of
Barton (1982), and the peak dilation angle is estima-
ted from the following equation:

¥

=0.5JRC, log( JCS)
o

n

(7

In the Mohr-Coulomb model, the dilation angle is
constant and represents an average value. Therefore
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a reduction factor of !2 is applied to the above

expression to calculate ¢4 for the Mohr-Coulomb
model.

Inside the range of normal stresses relevant (5 and
10 MPa,), we can find the shear strength (1) based
on the BB formulae presented in Equation (1). To be
equivalent to the BB-model in the same stress range,
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Figure 8 Magnified (x3) visualisation of block
movements in model 3 after tunnelling

the Mohr-Coulomb model should give the same
shear strength as the BB-model, i.e.,

T,=0,tan¢+c (o, =5MPa) ()
T, =0,tan¢+c (o, =10MPa) )
By solving the above system of equations, the fric-
tion angle and cohesion intercept for the equivalent
Mohr-Coulomb criterion are obtained. They turned
out to be $=24.8° and c=0.45 MPa for the BB-para-
meters shown in Table 1.

Fig. 9 shows the strains caused by the deviatoric
stresses for the three rock mass models. It may be
seen from the figure that although model 3 exhibits a

lower stiffness than models 1 and 2, the three models
fail at the same deviatoric stress. The results indicate
a relative insensitiveness to the effect of different
block sizes on the peak shear strength of a jointed
rock mass. This insensitivity is attributed to the fact
that in the MC model, the dilation angle is constant
and does not increase with the shear displacement. In
the BB model the dilation angle rises to a peak and
slowly reduces thereafter.

Figures 10 a and 10b show the rotation of blocks
(shown in the figure through rotation arcs) for model
3 after consolidation using the BB and the MC
model respectively. It may be seen that more block
rotations occur when using the BB model than the
MC model. Block rotation occurs only when transla-
tional shear has already occurred. Translational shear
in fact causes dilation of the joints creating the space
for rotations. It is widely acknowledged that the
degree to which a rock joint dilates when sheared
has important consequences in rock mechanics.
Thus, for non-planar joints the BB-model may
render itself more appropriate for numerical analyses
of underground excavations if dilation effects are
expected to be significant. However, the computa-
tional effort is larger when using the BB-model than
the MC model.
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Figure 9 Deformation behaviour exhibited by the three models when using the MC model
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Figure 10 A comparison of block rotations (shown through rotation arcs) when using the BB model (a)

and the MC model (b)

CONCLUSION

In this paper the effect of joint constitutive laws on
the stress-strain behaviour of a rock mass was
examined using the numerical code UDEC. The
results have shown that the peak shear strength of a
rock mass depends on the constitutive law used. In
this respect it is revealed that the Mohr-Coulomb
model, in which the dilation angle is constant, is
relatively insensitive to the effect of different block
sizes on the peak shear strength of a rock mass.

The BB model, which allows the modelling of vari-
able dilation accompanying shear, predicts results
similar to those from earlier physical model tests on
a rock model material. These results indicate that the
size of the individual blocks controls both the shear
strength of the rock mass and its deformational cha-
racteristics. A closely jointed rock mass in which
block rotations occur exhibits a lower stiffness but a
higher peak shear strength than a rock mass with
widely spaced joints.
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